Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
3.
J Neuroradiol ; 2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2181827

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral hypoperfusion has been reported in patients with COVID-19 and neurological manifestations in small cohorts. We aimed to systematically assess changes in cerebral perfusion in a cohort of 59 of these patients, with or without abnormalities on morphological MRI sequences. METHODS: Patients with biologically-confirmed COVID-19 and neurological manifestations undergoing a brain MRI with technically adequate arterial spin labeling (ASL) perfusion were included in this retrospective multicenter study. ASL maps were jointly reviewed by two readers blinded to clinical data. They assessed abnormal perfusion in four regions of interest in each brain hemisphere: frontal lobe, parietal lobe, posterior temporal lobe, and temporal pole extended to the amygdalo-hippocampal complex. RESULTS: Fifty-nine patients (44 men (75%), mean age 61.2 years) were included. Most patients had a severe COVID-19, 57 (97%) needed oxygen therapy and 43 (73%) were hospitalized in intensive care unit at the time of MRI. Morphological brain MRI was abnormal in 44 (75%) patients. ASL perfusion was abnormal in 53 (90%) patients, and particularly in all patients with normal morphological MRI. Hypoperfusion occurred in 48 (81%) patients, mostly in temporal poles (52 (44%)) and frontal lobes (40 (34%)). Hyperperfusion occurred in 9 (15%) patients and was closely associated with post-contrast FLAIR leptomeningeal enhancement (100% [66.4%-100%] of hyperperfusion with enhancement versus 28.6% [16.6%-43.2%] without, p = 0.002). Studied clinical parameters (especially sedation) and other morphological MRI anomalies had no significant impact on perfusion anomalies. CONCLUSION: Brain ASL perfusion showed hypoperfusion in more than 80% of patients with severe COVID-19, with or without visible lesion on conventional MRI abnormalities.

4.
Front Immunol ; 13: 1022673, 2022.
Article in English | MEDLINE | ID: covidwho-2163017

ABSTRACT

Introduction: Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods: Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results: Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion: The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Zinc , Copper , Trace Elements/analysis
6.
Clin Microbiol Infect ; 28(12): 1651.e1-1651.e8, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2130467

ABSTRACT

OBJECTIVES: Emergency departments (EDs) were on the front line for the diagnostic workup of patients with COVID-19-like symptoms during the first wave. Chest imaging was the key to rapidly identifying COVID-19 before administering RT-PCR, which was time-consuming. The objective of our study was to compare the costs and organizational benefits of triage strategies in ED during the first wave of the COVID-19 pandemic. METHODS: We conducted a retrospective study in five EDs in France, involving 3712 consecutive patients consulting with COVID-like symptoms between 9 March 2020 and 8 April 2020, to assess the cost effectiveness of imaging strategies (chest radiography, chest computed tomography (CT) scan in the presence of respiratory symptoms, systematic ultra-low-dose (ULD) chest CT, and no systematic imaging) on ED length of stay (LOS) in the ED and on hospital costs. The incremental cost-effectiveness ratio was calculated as the difference in costs divided by the difference in LOS. RESULTS: Compared with chest radiography, workup with systematic ULD chest CT was the more cost-effective strategy (average LOS of 6.89 hours; average cost of €3646), allowing for an almost 4-hour decrease in LOS in the ED at a cost increase of €98 per patient. Chest radiography (extendedly dominated) and RT-PCR with no systematic imaging were the least effective strategies, with an average LOS of 10.8 hours. The strategy of chest CT in the presence of respiratory symptoms was more effective than the systematic ULD chest CT strategy, with the former providing a gain of 37 minutes at an extra cost of €718. DISCUSSION: Systematic ULD chest CT for patients with COVID-like symptoms in the ED is a cost-effective strategy and should be considered to improve the management of patients in the ED during the pandemic, given the need to triage patients.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , Cost-Benefit Analysis , Retrospective Studies , Emergency Service, Hospital
7.
Nat Commun ; 13(1): 6025, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2062212

ABSTRACT

Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with rarer occurrence of severe disease requiring intensive care. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) is different from that in those infected with variant Delta (n = 111). We observe no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35-1.32]; p = 0.253). Among Omicron-infected patients, 43.2% are immunocompromised, most of whom have received two doses of vaccine or more (85.9%) but display a poor humoral response to vaccination. The mortality rate of immunocompromised patients infected with variant Omicron is significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there is no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/mutational profile and 28-day mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Phenotype , Prospective Studies , SARS-CoV-2/genetics
10.
J Heart Lung Transplant ; 41(10): 1429-1439, 2022 10.
Article in English | MEDLINE | ID: covidwho-1936470

ABSTRACT

BACKGROUND: Previous studies have reported that lung transplant recipients (LTR) develop a poor response to two doses of COVID-19 vaccine, but data regarding the third dose are lacking. We investigated the antibody response after three doses of mRNA vaccine in LTR and its predictive factors. METHODS: A total of 136 LTR, including 10 LTR previously infected and 126 COVID-19-naive LTR, were followed during and after three doses of mRNA vaccine. We retrospectively measured anti-receptor-binding domain (RBD) IgG response and neutralizing antibodies. In a posthoc analysis, we used a multivariate logistic regression model to assess the association between vaccine response and patient characteristics, including viral DNA load (VL) of the ubiquitous Torque teno virus (TTV) (optimal cut-off set by ROC curve analysis), which reflects the overall immunosuppression. RESULTS: After 3 doses, 47/126 (37.3%) COVID-19-naive LTR had positive anti-RBD IgG (responders) and 14/126 (11.1%) had antibody titers above 264 Binding Antibody Units/mL. None neutralized the omicron variant versus 7 of the 10 previously infected LTR. Nonresponse was associated with TTV VL ≥6.2 log10 copies/mL before vaccination (Odds Ratio (OR) = 17.87, 95% confidence interval (CI95) = 3.02-105.72), mycophenolate treatment (OR = 4.73, CI95 = 1.46-15.34) and BNT162b2 (n = 34; vs mRNA-1273, n = 101) vaccine (OR = 6.72, CI95 = 1.75-25.92). In second dose non-responders, TTV VL ≥6.2 or <3.2 log10 copies/mL before the third dose was associated with low (0/19) and high (9/10) rates of seroconversion. CONCLUSION: COVID-19-naive LTR respond poorly to three doses of mRNA vaccine, especially those with high TTV VL. Future studies could further evaluate this biomarker as a guide for vaccine strategies.


Subject(s)
COVID-19 , Torque teno virus , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , Biomarkers , COVID-19/prevention & control , COVID-19 Vaccines , DNA, Viral , Humans , Immunoglobulin G , Lung , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Torque teno virus/genetics , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
11.
Viruses ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1928656

ABSTRACT

Serological assays capable of measuring antibody responses induced by previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical tools in the response to the COVID-19 pandemic. In this study, we use bead-based multiplex assays to measure IgG and IgA antibodies and IgG avidity to five SARS-CoV-2 antigens (Spike (S), receptor-binding domain (RBD), Nucleocapsid (N), S subunit 2, and Membrane-Envelope fusion (ME)). These assays were performed in several cohorts of healthcare workers and nursing home residents, who were followed for up to eleven months after SARS-CoV-2 infection or up to six months after vaccination. Our results show distinct kinetic patterns of antibody quantity (IgG and IgA) and avidity. While IgG and IgA antibody levels waned over time, with IgA antibody levels waning more rapidly, avidity increased with time after infection or vaccination. These contrasting kinetic patterns allow for the estimation of time since previous SARS-CoV-2 infection. Including avidity measurements in addition to antibody levels in a classification algorithm for estimating time since infection led to a substantial improvement in accuracy, from 62% to 78%. The inclusion of antibody avidity in panels of serological assays can yield valuable information for improving serosurveillance during SARS-CoV-2 epidemics.


Subject(s)
Antibodies, Viral , Antibody Affinity , COVID-19 , SARS-CoV-2 , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Immunoglobulin A , Immunoglobulin G , Kinetics , Pandemics , Spike Glycoprotein, Coronavirus , Vaccination
12.
J Pers Med ; 12(7)2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1917579

ABSTRACT

Kidney transplant recipients (KTRs) displays marked inter-individual variations in magnitude of immune responses to anti-SARS-CoV-2 vaccination. The aim of this large single-center study was to identify the predictive factors for serological response to the mRNA-1273 vaccine in KTRs. We also devised a score to optimize prediction with the goal of implementing a personalized vaccination strategy. The study population consisted of 564 KTRs who received at least two doses of the mRNA-1273 vaccine. Anti-RBD IgG titers were quantified one month after each vaccine dose and until six months thereafter. A third dose vaccine was given when the antibody titer after the second dose was <143 BAU/mL. A score to optimize prediction of vaccine response was devised using the independent predictors identified in multivariate analysis. The seropositivity rate after the second dose was 46.6% and 22.2% of participants were classified as good responders (titers ≥ 143 BAU/mL). On analyzing the 477 patients for whom serology testing was available after the second or third dose, the global seropositivity rate was 69% (good responders: 46.3%). Immunosuppressive drugs, graft function, age, interval from transplantation, body mass index, and sex were associated with vaccine response. The devised score was strongly associated with the seropositivity rate (AUC = 0.752, p < 0.0001) and the occurrence of a good antibody response (AUC = 0.785, p < 0.0001). Notably, antibody titers declined over time both after the second and third vaccine doses. In summary, a high burden of comorbidities and immunosuppression was correlated with a weaker antibody response. A fourth vaccine dose and/or pre-exposure prophylaxis with monoclonal antibodies should be considered for KTRs who remain unprotected.

13.
Am J Transplant ; 22(11): 2675-2681, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1895939

ABSTRACT

The cilgavimab-tixagevimab combination retains a partial in vitro neutralizing activity against the current SARS-CoV-2 variants of concern (omicron BA.1, BA.1.1, and BA.2). Here, we examined whether preexposure prophylaxis with cilgavimab-tixagevimab can effectively protect kidney transplant recipients (KTRs) against the omicron variant. Of the 416 KTRs who received intramuscular prophylactic injections of 150 mg tixagevimab and 150 mg cilgavimab, 39 (9.4%) developed COVID-19. With the exception of one case, all patients were symptomatic. Hospitalization and admission to an intensive care unit were required for 14 (35.9%) and three patients (7.7%), respectively. Two KTRs died of COVID-19-related acute respiratory distress syndrome. SARS-CoV-2 sequencing was carried out in 15 cases (BA.1, n = 5; BA.1.1, n = 9; BA.2, n = 1). Viral neutralizing activity of the serum against the BA.1 variant was negative in the 12 tested patients, suggesting that this prophylactic strategy does not provide sufficient protection against this variant of concern. In summary, preexposure prophylaxis with cilgavimab-tixagevimab at the dose of 150 mg of each antibody does not adequately protect KTRs against omicron. Further clarification of the optimal dosing can assist in our understanding of how best to harness its protective potential.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2 , Kidney Transplantation/adverse effects , Antibodies, Neutralizing , Antibodies, Viral
14.
J Clin Virol ; 148: 105120, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1799873

ABSTRACT

RATIONALE/OBJECTIVES: SARS-CoV-2 is the cause of worldwide COVID-19, which severity has been linked to the immune and inflammatory response. Here, we investigate Torquetenovirus (TTV) DNA load - a marker reflecting the intensity of the overall immune response - as well as SARS-CoV-2 RNAemia and IgM/IgG antibodies in COVID-19-positive patients. METHODS: Two hundred and fifteen COVID-19-positive patients were enrolled, including 87 severe cases and 128 mild-moderate cases. SARS-CoV-2 RNAemia and IgM/IgG antibodies, as well as TTV DNA loads, were measured on longitudinal plasma samples. RESULTS: The rate of severe cases was higher in patients with low TTV DNA load in plasma considering a threshold of 700 copies/mL. In severe patients, SARS-CoV-2 RNAemia positivity rates were higher than those in mild-moderate cases at any timepoint. When combined, TTV DNA load and SARS-CoV-2 RNAemia allowed to predict the outcome of COVID-19 infection, with a higher risk (HR=12.4) of ICU admission in patients with low TTV DNA load and positive SARS-CoV-2 RNAemia. CONCLUSIONS: TTV DNA load and SARS-CoV-2 RNAemia may be effective, non-invasive markers reflecting disease severity and poor outcome that could be conveniently measured in a clinical laboratory setting, as soon as COVID-19 diagnosis is made.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , DNA , Humans , RNA, Viral
15.
Geroscience ; 44(3): 1229-1240, 2022 06.
Article in English | MEDLINE | ID: covidwho-1782920

ABSTRACT

The objectives of this study were to assess the dynamics of the SARS-CoV-2 anti-RBD-IgG response over time among older people after COVID-19 infection or vaccination and its comparison with indicative levels of protection. Geriatric patients with SARS-CoV-2 serological test results were included and divided into three groups. A vaccine group (n = 34), a group of natural COVID-19 infection (n = 32), and a group who contracted COVID-19 less than 15 days after the first injection (n = 17). Eighty-three patients were included; the median age with IQR was 87 (81-91) years. In the vaccine group at 1 month since the first vaccination, the median titer of anti-RBD-IgG was 620 (217-1874) BAU/ml with 87% of patients above the theoretical protective threshold of 141 BAU/ml according to Dimeglio et al. (J Infec. 84(2):248-88, [7]). Seven months after the first vaccination, this titer decreased to 30 (19-58) BAU/ml with 9.5% of patients > 141 BAU/ml. In the natural COVID-19 infection group, at 1 month since the date of first symptom onset, the median titer was 798 (325-1320) BAU/ml with 86.7% of patients > 141 BAU/ml and fell to 88 (37-385) with 42.9% of patients > 141 BAU/ml at 2 months. The natural infection group was vaccinated 3 months after the infection. Five months after the vaccination cycle, the median titer was 2048 (471-4386) BAU/ml with 83.3% of patients > 141 BAU/ml. This supports the clinical results describing the decrease in vaccine protection over time and suggests that vaccination after infection can maintain significantly higher antibody titer levels for a prolonged period of time.


Subject(s)
COVID-19 , Vaccines , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2
16.
Sci Transl Med ; 14(636): eabl6141, 2022 03 16.
Article in English | MEDLINE | ID: covidwho-1745839

ABSTRACT

Transplant recipients, who receive therapeutic immunosuppression to prevent graft rejection, are characterized by high coronavirus disease 2019 (COVID-19)-related mortality and defective response to vaccines. We observed that previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but not the standard two-dose regimen of vaccination, provided protection against symptomatic COVID-19 in kidney transplant recipients. We therefore compared the cellular and humoral immune responses of these two groups of patients. Neutralizing anti-receptor-binding domain (RBD) immunoglobulin G (IgG) antibodies were identified as the primary correlate of protection for transplant recipients. Analysis of virus-specific B and T cell responses suggested that the generation of neutralizing anti-RBD IgG may have depended on cognate T-B cell interactions that took place in germinal center, potentially acting as a limiting checkpoint. High-dose mycophenolate mofetil, an immunosuppressive drug, was associated with fewer antigen-specific B and T follicular helper (TFH) cells after vaccination; this was not observed in patients recently infected with SARS-CoV-2. Last, we observed that, in two independent prospective cohorts, administration of a third dose of SARS-CoV-2 mRNA vaccine restored neutralizing titers of anti-RBD IgG in about 40% of individuals who had not previously responded to two doses of vaccine. Together, these findings suggest that a third dose of SARS-CoV-2 mRNA vaccine improves the RBD-specific responses of transplant patients treated with immunosuppressive drugs.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
17.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1733147

ABSTRACT

Background SARS-CoV-2 breakthrough infections after complete vaccination are increasing whereas their determinants remain uncharacterized. Methods We analyzed two cases of post-vaccination SARS-CoV-2 infections by α and β variants, respectively. For each participant both humoral (binding and neutralizing antibodies) and cellular (activation markers and cytokine expression) immune responses were characterized longitudinally. Results The first participant (P1) was infected by an α variant and displayed an extended and short period of viral excretion and symptom. Analysis of cellular and humoral response 72 h post-symptom onset revealed that P1 failed at developing neutralizing antibodies and a potent CD4 memory response (lack of SARS-CoV-2 specific CD4+IL-2+ cells) and CD8 effector response (CD8+IFNγ+ cells). The second participant (P2) developed post-vaccination SARS-CoV-2 infection by a β variant, associated with a short period of viral excretion and symptoms. Despite displaying initially high levels and polyfunctional T cell responses, P2 lacked initial β-directed neutralizing antibodies. Both participants developed and/or increased their neutralization activity and cellular responses against all variants, namely, β and δ variants that lasts up to 3 months after breakthrough infection. Conclusions An analysis of cellular and humoral response suggests two possible mechanisms of breakthrough infection: a poor immune response to vaccine and viral evasion to neutralizing antibodies.

19.
Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology ; 2022.
Article in English | EuropePMC | ID: covidwho-1695327

ABSTRACT

Rationale/Objectives SARS-CoV-2 is the cause of worldwide COVID-19, which severity has been linked to the immune and inflammatory response. Here, we investigate Torquetenovirus (TTV) DNA load - a marker reflecting the intensity of the overall immune response - as well as SARS-CoV-2 RNAemia and IgM/IgG antibodies in COVID-19-positive patients. Methods Two hundred and fifteen COVID-19-positive patients were enrolled, including 87 severe cases and 128 mild-moderate cases. SARS-CoV-2 RNAemia and IgM/IgG antibodies, as well as TTV DNA loads, were measured on longitudinal plasma samples. Results The rate of severe cases was higher in patients with low TTV DNA load in plasma considering a threshold of 700 copies/mL. In severe patients, SARS-CoV-2 RNAemia positivity rates were higher than those in mild-moderate cases at any timepoint. When combined, TTV DNA load and SARS-CoV-2 RNAemia allowed to predict the outcome of COVID-19 infection, with a higher risk (HR=12.4) of ICU admission in patients with low TTV DNA load and positive SARS-CoV-2 RNAemia. Conclusions TTV DNA load and SARS-CoV-2 RNAemia may be effective, non-invasive markers reflecting disease severity and poor outcome that could be conveniently measured in a clinical laboratory setting, as soon as COVID-19 diagnosis is made.

20.
Infect Dis Now ; 52(1): 23-30, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1661845

ABSTRACT

OBJECTIVES: Strasbourg University Hospital faced an important COVID-19 first wave from early March 2020. We performed a longitudinal prospective cohort study to describe clinical and virological data, exposure history to COVID-19, and adherence to strict hygiene standards during the first pandemic wave in 1497 workers undergoing a SARS-CoV-2 serological test at our hospital, with a follow up of serology result three months later. PATIENTS AND METHODS: A total of 1497 patients were enrolled from April 6 to May 7, 2020. Antibody response to SARS-CoV-2 was measured, and COVID-19 exposure routes were analyzed according to SARS-CoV-2 serological status. RESULTS: A total of 515 patients (34.4%) were seropositive, mainly medical students (13.2%) and assistant nurses (12.0%). A history of COVID-19 exposure in a professional and/or private setting was mentioned by 83.1% of seropositive subjects (P<0.05; odds ratio [OR]: 2.5; 95% confidence interval [CI]: 1.8-3.4). COVID-19 exposure factors associated with seropositive status were non-professional exposure (OR: 1.9, 95% CI: 1.3-2.7), especially outside the immediate family circle (OR: 2.2, 95% CI: 1.2-3.9) and contact with a COVID-19 patient (OR: 1.6; 95% CI: 1.1-2.2). Among professionally exposed workers, systematic adherence to strict hygiene standards was well observed, except for the use of a surgical mask (P<0.05, OR: 1.9, 95% CI: 1.3-2.8). Of those who reported occasionally or never wearing a surgical mask, nurses (25.7%), assistant nurses (16.2%), and medical students (11.7%) were predominant. CONCLUSION: Infection of staff members during the first pandemic wave in our hospital occurred after both professional and private COVID-19 exposure, underlining the importance of continuous training in strict hygiene standards.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals, University , Humans , Pandemics , Personnel, Hospital , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL